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Evaluation of Space-Energy Factorization

for Two-Dimensional LMFBR Diffusion

Theory Problems

Weston M. Stacey, Jr.

Applied Physics Division, Argonne National Laboratory
Argonne, Illinois 60439

Use of a space-energy factorization (SEF) scheme to obtain approxi-

mate solutions to the energy-dependent neutron diffusion equation was

suggested in Ref. 1, where the method was successfully applied to one-

dimensional/2 L -group LMFBR models. Initial applications of the method

to two-dimensional! 2-group and one-dimensional/l6 5-group LMFBR models

were reported in Ref. 2. The purpose of this note is to report the

results of subsequent numerical studies undertaken to evaluate the effi-

cacy of the method for two-dimensional/24-group LMFBR models.

SEF has been incorporated into the inner iteration to obtain an

approximate solution to

H(r,E)(r,E) =	 dE' K(r,E 	 E) •(r,E') + S(r,E) 	 (1)

by factoring the flux within each of several shape function intervals

E
g
 E E

g+1 
in the form

0 (r ,E)	 a(E)tP(r)	
E -< E f-Eg	
g-	 g+1 • (2)
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Substituting relation 1 2) into Eq. (1) and integrating over the interval

gf
E

f
E

g+1 
yields equations for the shape functions, IP

JE	 E
g+1	 jg+1

dE	 dE K(r,E'	 E)a(E')

•_ g

(3)

11, .(r) ,

and the same substitution together with an integration over space yields an

equation for the spectral function, a(E),

[I, dr H(r,E)*g(r)ia(E) = ( dr S(r,E)

E.
	 7

/	

—

+	 1	 dE° 1__ dr K(r,E' -,- E)g4) ..(r) a(E') .	 (4)
g'<g E

g

In a typical calculation reported in this note, employing six shape-

function intervals, Eq. (4) would be solved on a 24-group basis for a(E).

The interval E
g
 < E < Eg+1 would contain 4 of the 24 groups, thus Eqs. (3)
— — 

would be solved on a 6 broad-group basis.

On each inner iteration, th from the previous inner iteration is used

to evaluate the spatial integrals in Eq. (4). Then a(E), E1 <E < E2 , is

obtained by solving Eq. (4), and used to evaluate the energy integrals

over this interval in Eqs. (3). Then Eq. (3) is solved for ty l . This
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value of 0 1 , and tP 2 from the previous inner iteration, are used to evalu-

ate the spatial integrals in Eq. (4), which is solved for a(E),

E2 < E < E3. This value of a(E) is used to evaluate the energy inte-

grals over this interval in Eqs. (3), which are then solved for 4, 2 . This

process is repeated for all shape function intervals.

The solution of Eqs. (3), which are formally identical to the multi-

group equations, is accomplished iteratively with an ADI-B 2 method simi-

lar to that of Ref. 3. Equation (4), which is identirA l to the fundamen-

tal mode slowing-down equation, is solved directly.

Power iteration, with two-term Chebyschev extrapolation, was

employed for the outer iterations. One inner iteration per outer itera-

tion was used (i.e. the SEF procedure outlined above was used once each

outer iteration, and a single sweep in each direction was used in solving

Eq. (3) by the ADI-B 2 scheme). Numerical experiments reve,q1ed that the

spectral function, a(E), did not change much flum iteration to iteration

after the first few iterations. Accordingly, the spectral function was

recalculated each iteration for the first five iterations, and subse-

quently only recalculated every fifth outer iteration. For the direct

24-group solution the same iteration scheme was used (i.e. power iteration

with two-term Chebyschev extrapolation on the outer), so that a meaningful

evaluation of the computational savings associated with the SEF method

could be made.

Numerical studies of the SEF method were performed on three reactor

models typical of proposed LMFBRs. The geometric model is shown in

Fig. 1 (for Model 3 the X-dimensions were 50, 40, 40, and 10 am), and the

compositions are given in Table I. Model 1 is very similar to models

which have been used in preliminary design studies for LMFBRs. Model 2
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differs from Mbdel I only in that the sodium has been completely voided

Lulu Core 2 and Axial Blanket 2, and represents a hypothetical accident

condition. Model 3 was chosen to provide a more difficult test of the

SEF method; the sodium content in the two core regions is significantly

different and a significant amount of plutonium has been included in the

blankets.

The objectives of these studies were to evaluate the accuracy and

computational economy of the SEF method, particularly relative to the

similar but simpler few-group approximations obtained by group collapsing,

and to evaluate the efficacy of using the fission source from the SEF

solution as an initial guess to accelerate the convergence of direct 24-

group solutions. The few-group constants were obtained by collapsing

over a critically buckled 24-group spectrum for the composition of Core 1.

Results shown in Table II indicate that the SEF method is signifi-

cantly more accurate in the prediction of criticality than a few-group

method which employs the same number of spatial-shape calculations. Cal-

lations with only two shape functions are significantly more accurate

than two-group calculations in predicting the maximum power peaking, and

the six-shape function calculation is somewhat superior to the six-group

calculation in this respect. Regional power fractions are predicted better

by the two-shape function calculation than by the two-group calculation,

but there is little difference between the six-shape function and six-

group predictions, as indicated in Tables III-V. Power distributions

along the horizontal and vertical centerlines of Model 3 are shown in

Figs. 2 and 3.

For Models 1 and 2 the few-group predictions of breeding ratios are

somewhat better than the corresponding SEF predictions, due to compensating
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errors in the few-group calculations which predict too hard a spectrum

and too much flux in the blankets. This trend is reversed for Model 3.

These results are shown in Tables III-V.

The computation times and number of outer iterations associated with

the various calculations are shown in Table VI. The two-shape function

calculation is roughly a factor of 5 quicker than the direct solution,

and the six-shape function solution, which is quite accurate, is roughly

a factor of 3 quicker than the direct solution. Few group solution times

are 20-30% less than the corresponding shape function solution times.

The computation of the collapsing spectrum and the preparation of the

few-group constants has not been included in the former, but this will

not significantly alter the comparison.

Use of the fission source from the SEF calculation as a first guess

in the direct 2 4-group solution significantly reduces (25-40%) both the

number of iterations and the total computing time relative to what is

required when the standard flat fission source is used as a first guess.

In this respect, use of the two-shape function solution is more economi-

cal than use of the more accurate six-shape function solution. Use of

the fission source fLum the few-group calculations may also reduce the

computing time required for the 24-group calculation, but this point has

not been investigated<

In summary, the SEF method provides an economical means for obtain-

ing approximate solutions to two-dimensional LMFBR diffusion theory prob-

lems. These solutions are sufficiently accurate for many applications,

and generally superior to the results of comparable few-group calculations.

Moreover, use of the SLE solution to accelerate the direct solution can

significantly reduce the computational time for the latter. Thus, it
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seems appropriate to conclude that the capability of multidimensional

diffusion theory codes designed to solve 20- to 30-group LMFBR problems

could be substantially enhanced by providing for the SEF calculation.

The necessary modifications should be minor, because Eqs. (3) can be

solved by the same routines which solve the conventional multigroup

equations and the solution of Eq. (4) is trivial. The strategy outlined

above for the SEF method is consistent with the group-ordering stategy

employed in many diffusion theory codes, so no major changes in data

management should be necessary.
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TABLE I

Compositions

Atomic Number Densities (at/cc x 1024)

Axial Axial Radial
Core 1 Core 2 Blanket 1 Blanket 2 Blanket Reflector

Models 1 and 2a

239PU 0.001086 0.001501 --- --- --- ---

238u 0.006383 0.005380 0.008013 0.007383 0.014515 ---

23Na 0.01041 0.01098 0.00881 0.00950 0.00660 0.00440

56 Fe 0.01814 0.01807 0.02444 0.02385 0.01728 0.06912

160 0.01494 0.01376 0.01603 0.01477 0.02903 ---

Model 3

239pu 0.0009 0.0013 0.0002 0.0001 0.0003
b

---

238u 0.0055 0.0048 0.0070 0.0070 0.0111b ---

23Na 0.0120 0.0080 0.0100 0.0070 0.0060
b

0.0040

56 Fe 0.0180 0.0180 0.0240 0.0240 0.0170 0.0690

160 0.0150 0.0140 0.0160 0.0150 0.0290 ---





TABLE II

Errors in keff and Maximum Power Peaking

Calculation

k
eff 

(% Error) P
max 

(% error)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

2 SF -0.8 -0.2 -0.6 +1.1 +0.1 -0.8

4 SF -0.2 --- --- +0.5 --- ---

6 SF +0.1 +0.3 +0.1 +0.4 -0.6 +0.6

2-group +1.2 +1.2 -6.5 -3.4 -1.0 +5.6

6-group +0.4 +0.4 -0.9 +0.7 +0.7 +1.0





TABLE III

Breeding Ratio and Power Fraction, Mbdel 1

Calculation

Breeding Ratioc Power Fraction (%)

Total
Axial
Blanket

Radial
Blanket Core 1 Core 2

Axial
Blanket

Radial
Blanket Core 1 Core 2

24-group 1.164 0.305 0.206 0.499 0.154 1.3 1.3 64.6 32.8

2 SF 1.109 0.260 0.190 0.496 0.164 2.6 2.4 62.3 32.7

4 SF 1.131 0.280 0.195 0.498 0.158 1.7 1.6 63.9 32.8

6 SF 1.136 0.287 0.196 0.496 0.156 1.4 1.3 64.3 33.0

2-group 1.118 0.265 0.196 0.495 0.162 3.0 2.7 62.1 32.2

6-group 1.143 0.289 0.199 0.498 0.157 1.4 1.3 64.3 33.0





TABLE IV

Breeding Ratio and Power Fraction, Model 2

Calculation

Breeding Ratio' Power Fraction (%)

Total
Axial
Blanket

Radial
Blanket Core 1 Core 2

Axial
Blanket

Radial
Blanket Core 1 Core 2

24-group 1.025 0.316 0.063 0.493 0.153 1.4 0.6 63.9 34.1

2 SF 0,943 0.263 0.045 0.476 0.159 2.8 0.7 62.5 34.0

6 SF 0.994 0.295 0.058 0.488 0.153 1.5 0.6 64.3 33.6

2-group 0.970 0.273 0.045 0.490 0.162 3.2 0.7 62.5 33.6

6-group 1.014 0.302 0.059 0.496 0.158 1.5 0.6 63.8 34.1





Table V

Breeding Ratio and Power Fraction, Model 3

Calculation

Breeding Ratioc Power Fraction (%)

Total
Axial
Blanket

Radial
Blanket Core 1 Core 2

Axial
Blanket

Radial
Blanket Core 1 Core 2

24-group 1.062 0.285 0.227 0.347 0.203 9.1 4.8 42.9 43.2

2 SF 1.027 0.257 0.210 0.344 0.216 9.5 5.6 41.5 43•4

6 SF 1.044 0.274 0.217 0.347 0.206 8.9 4.7 43.0 43.4

2-group 1.024 0.248 O198 0.350 0.228 8.3 4.5 41.6 45.6

6-group 1.037 0.271 0.213 0.346 0.206 8.8 4.8 43.0 43.5
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TABLE VI

Computational Times and Iterations

Calculation

Model 1 Model 2 Model 3

No.
Iterations

.	 d
man

No.
Iterations

.	 d
man

No.
Iterations

.	 d
man

24-group 15 10.90 15 11.26 15 8.87

2 SF 15 2.05 17 1.98 15 1.76

6 SF 16 3.10 16 3.23 14 2.48

2-group 15 --- 15 1.39 15 1.23

6-group 15 --- 15 2.53 15 1.99

24 -group/2 SFe 7 7.05 7 7.24 7 5.90

24 -group/6 SFe 7 8.10 -- --- 6 6.03
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Footnotes for Tables:

a
For Model 2, the sodium number density was zero for Core 2 and

Axial Blanket 2.

b
For that portion of the radial blanket which extends above the core

axially, 239PU = 0.0001, 238U = 0.0112, 23Na = 0.0070.

cThe breeding ratio for a region is defined as the ratio of the 239U

capture in that region to the 239PU absorption in the entire reactor.

The total breeding ratio then results as a sum of region breeding ratios.

d
Central Processing Unit, IBM-360-50/75.

aThe fission source from the 2- (or 6) shape SEF calculation was used

as an initial guess in the 24-group calculation. The computing time in-

cludes the time required for the SEF rAlculation and the time required

for the 24-group calculation.





FIGURE CAPTIONS

1. Two-dimensional LMFBR model.

2. Per distribution along vertical centerline (left boundary) for Model 3.

3. Power distribution along horizontal centerline (lower boundary) for

Model 3.
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Fig. 1. Two-dimensional LMFBR model.
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Fig. 3. Power distribution along horizontal centerline (lower boundary) for Model 3.
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